vendredi 9 février 2024

La Terre, la vie et l’organisation du vivant

Misensituation

Video sur le clonage https://youtu.be/IVQ2Pqjsahg

pour en savoir plus : https://www.museum.toulouse.fr/-/le-clonage-animal-entre-mythes-et-realites

questions que cela pose ?


Pourquoi les gènes ne transmettent pas tout le code génétique ?

Pourquoi permet-on cela sur les animaux mais pas sur les humains ?

Pourquoi la majorité des animaux qui naissent par clonage sont handica^pés

Comment transmettre le caractère d'un animal à un autre ?

Pourcentage de réussite?


Rappels aquis à qui ?




Histoire de la génétique pour réviser

Réalisez une frise chronologique pour comprendre l’histoire des idées, le cheminement de la pensée humaine

  • 1865 (Autriche) Mendel démontre l'existence de "facteurs génétiques"

  • 1868 (Suisse) Miescher trouve une substance spécifique du noyau qu'il nomme la "nucléine"

  • 1879 (Allemagne) Flemming dessine la chromatine

  • 1882 (Allemagne) Flemming, van Beneden & Strasburger dessinent les chromosomes lors de la division cellulaire.

  • 1883 (Allemagne) Weismann utilise le terme "matériel génétique"

  • 1900 (Pays Bas, Autriche, Allemagne) DeVries, von Tschermak et Correns redécouvrent le travail de Mendel

  • 1903 (Amérique) Sutton fait l’hypothèse que les chormosomes sont le support de l’hérédité

  • 1905 (Angleterre) Bateson utilise le termegenetics”.

  • 1909 (Danemark) Johannsen propose le mot gène pour remplacer celui de facteur utilisé par Mendel

  • 1909 (Russie) Levene découvre le ribose

  • 1910 (Allemagne) Kossel découvre les quatre bases nucléiques : adénine, guanine, thymine et cytosine

  • 1910 (Amérique) Morgan montre que les gènes sont portés par les chromosomes

  • 1912 (Allemagne) von Laue fonde la discipline de la radiocristallographie

  • 1913 (Amérique) Sturtevant réalise la première carte génétique d’un chromosome.

  • 1919 (Russie) Levene décrit la structure des nucléotides composés de phosphate-sucre-base

  • 1928 (Amérique) Griffith montre que l’hérédité est donnée par une molécule

  • 1930 (Angleterre) Astbury démontre que l’ADN a une structure en long filament et une succession de bases empilées selon un espace régulier de 0,34 nm

  • 1933 (France) Brachet démontre que l’ADN est dans les chromosomes et l’ARN dans le cytoplasme

  • 1941 (Amérique) Beadle & Tatum montrent qu’un gène code pour une protéine

  • 1944 (Amérique) Avery, Mc Leod & Mc Carty montrent que l'ADN est le support des gènes

  • 1940 (Amérique) Mc Clintock montre l’existence de gènes sauteurs, les transposons

  • 1952 (Amérique) Hershey et Chase confirment le rôle de l’ADN comme support de l’information génétique

  • 1951 (Amérique) Chargaff établit la règle : [A] = [T] et [C] = [G] pour toute cellule

  • 1953 (Angleterre) Franklin & Wilkins montrent que la molécule a la forme d'une double hélice

  • 1953 (Amérique, Angleterre) Watson & Crick établissent le modèle moléculaire de l'ADN

  • 1956 (Amérique) Kornberg découvre l’ADN polymérase ADN dépendante (ADN pol I)

  • 1958 (Amérique) Meselson & Stahl montrent que l'ADN se réplique de façon semi-conservative

  • 1958 (France) Gautier montre que le syndrome de Down est une trisomie 21

  • 1960 (Amérique, Angleterre) Crick & Brenner découvrent le codon

  • 1961 (France) Monod & Jacob découvrent l’ARNm

  • 1965 (Amérique) Nirenberg & Mattéi découvrent le code génétique

  • 1965 (Suisse, Amérique) Arber, Nathans & Smith découvrent les enzymes de restriction (endonucléases)

  • 1967 (Amérique) Nirenberg & Khorana complètent les travaux de Monod & Jacob sur la transcription et la traduction

  • 1977 (Angleterre, Amérique) Sanger et Gilbert mettent au point deux méthodes de séquençage de l’ADN

  • 1983 (Amérique) Mullis met au point la polymérase chain reaction (PCR)

  • ...

compléter avec :

http://www.medecine.unige.ch/enseignement/dnaftb/

http://www.genoscope.cns.fr/externe/HistoireBM/

https://www.timetoast.com/timelines/genetics-timeline--15

https://www.timetoast.com/search/timelines?cx=partner-pub-3637961829875093%3Aehixnl-dg1y&cof=FORID%3A9&ie=UTF-8&q=genetics&sa=Search&siteurl=localhost%2F&ref=localhost%2Fcategories&ss=

DNA from the begining : http://www.dnaftb.org/

4/ GÉNÉTIQUE ET ÉVOLUTION

Cette partie s’inscrit dans une logique d’approfondissement des acquis des années précédentes, notamment des concepts de biodiversité et d’évolution. Dès la classe de seconde, la diversité génétique et les processus évolutifs ont été abordés dans le contexte de la biodiversité. En classe de première, les mécanismes à l’origine des mutations ont été identifiés, ainsi que leurs effets sur la santé humaine. En classe terminale, il s’agit de comprendre comment la reproduction sexuée forme des génomes individuels et contribue à la diversification du vivant, aux côtés d’autres processus génétiques et non génétiques. Consolider ses acquis en génétique et découvrir les techniques qui aboutissent à la connaissance du génome de chaque individu. Comprendre que l’hérédité n’est pas exclusivement liée à l’ADN.

  • notez les mots clef


Comment évolue notre génôme ?

4,1/ L’ORIGINE DU GÉNOTYPE DES INDIVIDUS

Objectifs : il s’agit d’abord d’identifier les conséquences génétiques, pour les individus, des divisions cellulaires étudiées en classe de première. Cela permet aussi :

- de comprendre que la reproduction sexuée garantit l’émergence de nouveaux génomes chez les êtres vivants, en tolérant des erreurs (qui deviennent des innovations) au sein d’espèces vivantes de plus en plus complexes à l’échelle des temps géologiques ;

- d’acquérir les principes de bases de l’analyse génétique sur des exemples simples.

Liens : SVT – enseignement de spécialité en classe de première : mitose et méiose ; mutations ; variation génétique et santé.


qu'est ce que l'analyse génétique ? révision de 1ère...

4,1,1/ Analyse génétique

1/ Tests génétiques

Le terme de risque génétique définit la probabilité pour un individu d’être porteur d’une mutation spécifique à l’origine d’une maladie génétique ou celle d’être atteint par cette maladie. L’évaluation de ce risque est un élément essentiel du conseil génétique.

  • Maladies autosomiques dominantes : l’enfant d’un individu atteint d’une maladie dominante autosomique a 50% de risque d’être lui-même porteur de la mutation.

  • Maladies autosomiques récessives : le risque pour un couple d’avoir un enfant atteint d’une maladie récessive autosomique est égal à : risque que la mère soit hétérozygote x risque que le père soit hétérozygote x 1/4 (explication de 1/4 : un risque sur deux que l’allèle issu de la mère hétérozygote soit muté et un risque sur deux que l’allèle hérité du père hétérozygote soit muté : 1/2 x 1/2 = 1/4)

  • Maladies liées au chromosome x : le risque d’être hétérozygote pour un individu de sexe féminin dépend de son lien de parenté avec le ou les individus atteints et de l’histoire familiale. En cas d’affection familiale prouvée (atteinte de plusieurs générations), les filles d’une femme conductrice obligatoire ont 1/2 risque d’être elles-mêmes hétérozygotes. Le risque d’une fille est égal à la moitié du risque de sa mère.

Des tests consistent à rechercher des anomalies sur la molécule d’ADN elle-même, ou à dépister des anomalies concernant le nombre ou la forme des chromosomes. Il faut distinguer les tests :

  • qui apportent des informations sur le patrimoine génétique transmissible, présent dans toutes les cellules de l’organisme (génétique constitutionnelle),

  • qui informent sur l’état du génome de cellules tumorales (génétique somatique).

  • permettent d’obtenir des informations sur la réponse à un traitement ou sur les risques d’effets secondaires (pharmacogénomique).

1/ Les tests de génétique constitutionnelle

  • Les tests de génétique constitutionnelle (ou héréditaire) reposent sur l’étude du patrimoine génétique d’une personne, le plus souvent à partir d’une prise de sang. Ils peuvent être réalisés avant la naissance (test prénatal) ou après, à n’importe quel âge (test postnatal).

Ces tests sont envisagés dans trois situations :

  • Le diagnostic de maladies génétiques

  • Le diagnostic de maladies pré-symptomatique

  • Les tests de pharmacogénétique

1,1/ Le diagnostic de maladies génétiques

Un test génétique diagnostic est effectué en cas de symptôme pouvant évoquer une maladie génétique. Ces tests sont utilisés pour le diagnostic de maladies monogéniques (liées à des anomalies affectant un seul gène), dont le gène causal est identifié (mucoviscidose, hémochromatose héréditaire, polypose colique familiale).

1,2/Le diagnostic de maladies pré-symptomatique (tests prédictifs)

  • Pour les maladies monogéniques : Les tests génétiques prédictifs sont effectués chez des personnes qui ne présentent aucun symptôme, afin de prédire le risque de développer ultérieurement une maladie. Ces tests peuvent être hautement prédictifs : dans le cas de la maladie de Huntington, par exemple, la mutation cherchée est une condition nécessaire et suffisante pour développer la maladie.

  • Pour les maladies multifactorielles : en cancérologie, notamment proposés lorsqu’une mutation a déjà été identifiée dans la famille. Ces tests apportent une indication concernant le risque de développer la maladie, mais en aucun cas une certitude : les facteurs environnementaux et personnels contribuent largement à la survenue d’un cancer, et les mutations génétiques recherchées lors de ces tests ne sont ni nécessaires, ni suffisantes à l’apparition d’un cancer. (Ex : si mutation sur le gène BRCA1 ou BRCA2, le risque de développer un cancer du sein avant 70 ans est de 40 à 85%, alors qu’il est de 10% dans la population générale, le risque de développer un cancer de l’ovaire est de 10 à 60%, contre 1% dans le reste de la population. si mutation de l’un des gènes de la famille MMR : 40 à 70% de risque de développer un cancer colorectal avant l’âge de 70 ans.)

1,3/Les tests de pharmacogénétique

La pharmacogénomique consiste à étudier les caractéristiques génétiques d’un individu pour prédire la réponse de son organisme à un médicament : effets secondaires, risques de surdosages, ou encore inefficacité.

2/ Les tests de génétique somatique

Les tests de génétique somatique (non héréditaire) consistent à analyser le génome des cellules cancéreuses pour détecter des mutations survenues spécifiquement dans la tumeur et prédire la réponse à un traitement ciblé. On parle de « test compagnon ». Ils sont réalisés à partir d’une biopsie ou d’une prise de sang pour les cancers hématopoïétiques


Deux principales approches d’analyses du génome sont utilisées dans le cadre des tests génétiques :

La génétique moléculaire, qui consiste à analyser la molécule d’ADN pour détecter des mutations ou autres anomalies de façon ciblée sur le génome.

La cytogénétique, qui consiste à étudier le nombre et la forme des chromosomes pour détecter des remaniements affectant des fragments chromosomiques ou des chromosomes entiers.

L’analyse génétique peut se fonder sur l’étude de la transmission héréditaire des caractères observables [phénotype] dans des croisements issus le plus souvent de lignées pures (homozygotes) et ne différant que par un nombre limité de caractères.

Dans le cas de l’espèce humaine, l’identification des allèles portés par un individu s’appuie d’abord sur une étude au sein de la famille, en appliquant les principes de transmission héréditaire des caractères.

L’utilisation de bases de données informatisées permet d’identifier des associations entre certains gènes mutés et certains phénotypes.


2/ Séquençage génomique et bioinformatique

Séquençage et bioinfo en Video INSERM 3’54 : https://youtu.be/TCnG7R50IlU


La génomique est une discipline de la biologie moderne. Elle étudie le fonctionnement d'un organisme, d'un organe, d'un cancer, etc. à l'échelle du génome, au lieu de se limiter à l'échelle d'un seul gène.
La génomique se divise en deux branches :

Le séquençage de l'ADN est inventé dans la deuxième moitié des années 1970. Deux méthodes sont développées indépendamment, l'une par l'équipe de Walter Gilbert, aux États-Unis, et l'autre par celle de Frederick Sanger (en 1977), au Royaume-Uni. Ces deux méthodes sont fondées sur des principes diamétralement opposés : l'approche de Sanger est une méthode par synthèse enzymatique sélective, tandis que celle de Maxam et Gilbert est une méthode par dégradation chimique sélective.

La méthode de Maxam et Gilbert nécessite des réactifs chimiques toxiques et reste limitée quant à la taille des fragments d'ADN qu'elle permet d'analyser (< 250 nucléotides). Moins facile à robotiser, son usage est devenu aujourd'hui confidentiel.

Au cours des 25 dernières années, la méthode de Sanger a été largement développée grâce à plusieurs avancées technologiques importantes :

  • la mise au point de vecteurs de séquençage adaptés, comme le phage M13 développé par Joachim Messing au début des années 1980 ;

  • le développement de la synthèse chimique automatisée des oligonucléotides qui sont utilisés comme amorces dans la synthèse ;

  • l'introduction de traceurs fluorescents à la place des marqueurs radioactifs utilisés initialement. Ce progrès a permis de sortir le séquençage des pièces confinées nécessaires à l'usage de radio-isotopes ;

  • l'adaptation de la technique PCR pour le séquençage ;

  • l'utilisation de séquenceurs automatiques de gènes ;

  • l'utilisation de l'électrophorèse capillaire pour la séparation et l'analyse.

Sanger method in video : https://youtu.be/-QIMkQ4E_wE


La bio-informatique, ou bioinformatique, est un champ de recherche multi-disciplinaire de la biotechnologie où travaillent de concert biologistes, chimistes, médecins, informaticiens, mathématiciens, physiciens et bio-informaticiens, dans le but de résoudre un problème scientifique posé par la biologie. Plus généralement, la bio-informatique est l'application de la statistique et de l'informatique à la science biologique. Le spécialiste qui travaille à mi-chemin entre ces sciences et l'informatique est appelé bio-informaticien ou bionaute. Ce domaine s'étend de l'analyse du génome à la modélisation de l'évolution d'une population animale dans un environnement donné, en passant par la modélisation moléculaire, l'analyse d'image, l'assemblage de génome et la reconstruction d'arbres phylogénétiques (phylogénie). Cette discipline constitue la « biologie in silico », par analogie avec in vitro ou in vivo.

Aucun commentaire:

Enregistrer un commentaire