vendredi 23 septembre 2022

1,1,3/ Analyse génétique

 

L’analyse génétique peut se fonder sur l’étude de la transmission héréditaire des caractères observables (phénotype) dans des croisements issus le plus souvent de lignées pures (homozygotes) et ne différant que par un nombre limité de caractères.

Dans le cas de l’espèce humaine, l’identification des allèles portés par un individu s’appuie d’abord sur une étude au sein de la famille, en appliquant les principes de transmission héréditaire des caractères.

L’utilisation de bases de données informatisées permet d’identifier des associations entre certains gènes mutés et certains phénotypes.

2/ Séquençage génomique et bioinformatique

Séquençage et bioinfo en Video INSERM 3’54 : https://youtu.be/TCnG7R50IlU

La génomique est une discipline de la biologie moderne. Elle étudie le fonctionnement d'un organisme, d'un organe, d'un cancer, etc. à l'échelle du génome, au lieu de se limiter à l'échelle d'un seul gène.
La génomique se divise en deux branches :

Le séquençage de l'ADN est inventé dans la deuxième moitié des années 1970. Deux méthodes sont développées indépendamment, l'une par l'équipe de Walter Gilbert, aux États-Unis, et l'autre par celle de Frederick Sanger (en 1977), au Royaume-Uni. Ces deux méthodes sont fondées sur des principes diamétralement opposés : l'approche de Sanger est une méthode par synthèse enzymatique sélective, tandis que celle de Maxam et Gilbert est une méthode par dégradation chimique sélective.

La méthode de Maxam et Gilbert nécessite des réactifs chimiques toxiques et reste limitée quant à la taille des fragments d'ADN qu'elle permet d'analyser (< 250 nucléotides). Moins facile à robotiser, son usage est devenu aujourd'hui confidentiel.

Au cours des 25 dernières années, la méthode de Sanger a été largement développée grâce à plusieurs avancées technologiques importantes :

  • la mise au point de vecteurs de séquençage adaptés, comme le phage M13 développé par Joachim Messing au début des années 1980 ;

  • le développement de la synthèse chimique automatisée des oligonucléotides qui sont utilisés comme amorces dans la synthèse ;

  • l'introduction de traceurs fluorescents à la place des marqueurs radioactifs utilisés initialement. Ce progrès a permis de sortir le séquençage des pièces confinées nécessaires à l'usage de radio-isotopes ;

  • l'adaptation de la technique PCR pour le séquençage ;

  • l'utilisation de séquenceurs automatiques de gènes ;

  • l'utilisation de l'électrophorèse capillaire pour la séparation et l'analyse.

Sanger method in video : https://youtu.be/-QIMkQ4E_wE


La bio-informatique, ou bioinformatique, est un champ de recherche multi-disciplinaire de la biotechnologie où travaillent de concert biologistes, chimistes, médecins, informaticiens, mathématiciens, physiciens et bio-informaticiens, dans le but de résoudre un problème scientifique posé par la biologie. Plus généralement, la bio-informatique est l'application de la statistique et de l'informatique à la science biologique. Le spécialiste qui travaille à mi-chemin entre ces sciences et l'informatique est appelé bio-informaticien ou bionaute. Ce domaine s'étend de l'analyse du génome à la modélisation de l'évolution d'une population animale dans un environnement donné, en passant par la modélisation moléculaire, l'analyse d'image, l'assemblage de génome et la reconstruction d'arbres phylogénétiques (phylogénie). Cette discipline constitue la « biologie in silico », par analogie avec in vitro ou in vivo.


Le développement des techniques de séquençage de l’ADN et les progrès de la bioinformatique donnent directement accès au génôme de chaque individu comme à ceux de ses ascendants et descendants.

Aucun commentaire:

Enregistrer un commentaire