2/ climat mésozoïque = ère secondaire = Trias – Jurassique - Crétacé
Manuel p.304
la zone de répartition des coraux remonte au-delà des latitudes 30°N et 30°S, ce qui indique une étendue plus importante des zones équatoriales et tropicales par rapport à l’actuel. Il faut donc tenir compte de cette observation pour l’interprétation des données des autres documents de cette étude.
Concernant les évaporites du Crétacé : on les trouve aujourd’hui en Amérique du Sud, en Afrique du Nord et du Sud mais aussi en Inde et en Chine. Ces continents avaient une répartition géographique différente au moment de la formation de ces roches, ils occupaient des latitudes plus hautes. les évaporites se forment en climat aride, ce qui signifie que des climats arides devaient régner au Crétacé aux hautes latitudes, traduisant une époque plus chaude que l’actuel.
Le même raisonnement peut être mené à l’identique pour les autres roches. Leurs conditions de formation sont déterminées par principe d’actualisme et l’on sait sous quel climat elles se forment. En connaissant la position des continents au Crétacé, donc le lieu de formation des roches, on peut connaître les conditions climatiques qui régnaient à telle latitude à cette période, donc caractériser l’étendue des zones climatiques et, par extension, la moyenne des températures terrestres définissant le Crétacé comme une période chaude.
La teneur en CO2 de l’atmosphère par rapport à la teneur actuelle. On constate que cette concentration atmosphérique est 5 fois plus élevée au Crétacé qu’actuellement, ce qui laisse penser que l’effet de serre important qui en découle a nécessairement engendré une augmentation des températures. L’une des hypothèses concernant ce taux élevé de CO2 est que ce dernier serait issu de l’activité volcanique intense des dorsales océaniques. Ainsi, le fractionnement de la Pangée et son accentuation au Crétacé engendre un dégazage de CO2 dans l’atmosphère, lui-même responsable d’une augmentation de l’effet de serre et, par conséquent une élévation des températures.
la mise en place du courant circumpolaire grâce à l’ouverture du détroit de Drake, il y a 35 millions d’années c’est-à-dire après le Crétacé. Ce courant est considéré comme un super-régulateur des températures océaniques mondiales et, par entraînement, un régulateur climatique. Actuellement, il permet le mélange rapide, à l’échelle des temps géologiques, des eaux en provenance des trois océans à répartition latitudinale importante. Ce qui a pour effet de niveler les températures dans l’espace et dans le temps.
Au Crétacé, la liaison entre l’Amérique du Sud et l’Antarctique, visible sur le document , ne permet pas la mise en place d’un tel courant. Les eaux de chaque océan ne se mélangent pas et n’ont pas le temps de se refroidir en tournant pendant un certain temps aux hautes latitudes soumises à de faibles températures. Il en résulte sans doute une augmentation de la température des océans, ce qui aura également un impact sur la température de l’atmosphère. Ces deux phénomènes, servant ici d’exemples, ne sont pas exhaustifs et ont même très certainement agi en synergie. Ils sont tous deux induits par la tectonique des plaques qui, en fragmentant la Pangée, transforme la face du monde et l’équilibre fragile qui régnait précédemment.
Tectoglob3D : https://www.pedagogie.ac-nice.fr/svt/productions/tectoglob3d/
Pour afficher la carte, sélectionner « données affichées » puis « calques intégrés » puis « Âge du plancher océanique ». Pour effectuer les mesures, sélectionner « Actions » puis « Mesurer une longueur ».
Quelques valeurs obtenues sur Tectoglob3D pour l’océan Atlantique :
|
Jurassique |
Crétacé |
Cénozoïque |
Durée (Ma) |
40 |
40 |
60 |
Largeur des fonds créés (km) à +25°N |
970 |
1 550 |
1 800 |
Vitesse moyenne d’expansion (km/Ma) |
24 |
39 |
30 |
Largeur des fonds créés (km) à –35°S |
650 |
2100 |
2470 |
Vitesse moyenne d’expansion (km/Ma) |
16 |
53 |
41 |
Utiliser les connaissances acquises sur la géodynamique interne et la tectonique des plaques pour comprendre leur rôle sur le climat et mettre en relation la nature des roches formées avec les paléoclimats du Crétacé.
modèle explicatif du climat au Crétacé :
époque de séparation des masses continentales
Fort taux d'expansion océanique traduisant une forte activité magmatique des dorsales
dégazage de CO2 au niveau des dorsales
Augmentation de la teneur atmosphérique en CO2
Augmentation de l'effet de serre
Réchauffement global
Au Mésozoïque, pendant le Crétacé, les variations climatiques se manifestent par une tendance à une hausse de température.
Du fait de l’augmentation de l’activité des dorsales, la géodynamique terrestre interne semble principalement responsable de ces variations.
3/ climat cénozoïque = ère tertiaire = paléo-néogène
Manuel p.302
graphanimé : https://youtu.be/8KOPl1a_eho?si=cs6r__qG12tS_bv7 The history of atmospheric CO2 levels over the last 60 million years alongside potential pathways of future CO2 change. Data are from a study led by Earth and Environmental Scientists at University of St Andrews, available at https://www.annualreviews.org/doi/abs...
https://actugeologique.fr/2019/03/les-glaciations-du-cenozoique/
Le document 1 permet de comprendre comment reconstituer les caractéristiques du climat et de l’atmosphère sur des temps anciens. Pour ce faire, les chercheurs utilisent des données scientifiques afin de construire des modèles.
Données scientifiques (registre empirique) |
Modèle |
Données sédimentologiques |
Reconstitution des calottes polaires |
Données isotopiques (δ18O des foraminifères benthiques) |
Reconstitution de la température des eaux profondes |
Données isotopiques du carbone dans les sédiments carbonatés |
Reconstitution de la teneur atmosphérique en CO2 |
Les modèles montrent qu’à partir d’un optimum climatique au début de l’Éocène, un refroidissement progressif a lieu durant tout le restant du Cénozoïque. Ce refroidissement est corrélé à une diminution de la teneur atmosphérique en CO2.
Le document 2 aborde un des mécanismes géologiques intervenant dans le cycle du carbone : l’altération des roches continentales. Ce mécanisme a déjà été étudié en classe de seconde. Ici, il s’agit de comprendre son effet sur la teneur atmosphérique en CO2.
la réaction 1, correspond à l’hydrolyse du plagioclase en un minéral argileux, la kaolinite, et en ions solubles calcium et hydrogénocarbonate. Cette réaction consomme du CO2 atmosphérique dissous dans l’eau. Le devenir des ions solubles est présenté par la précipitation biochimique des carbonates selon la réaction 2, produisant du CO2. Le bilan des deux mécanismes aboutit à une consommation de CO2.
Le document 3 permet de montrer l’importance du phénomène d’altération des roches au Cénozoïque. Le document A illustre la relation entre formation de reliefs et altération à travers les cônes d’alluvions issus de l’érosion des reliefs himalayens dans la plaine de l’Indus. L’activité pratique (document B) permet de remobiliser les acquis sur le passé géologique de la Terre en observant, grâce au module « Disposition passée des continents » de Tectoglob3D, le déplacement des masses continentales et la formation de la ceinture orogénique alpine au Cénozoïque. Enfin, l’histogramme C présente une estimation de la masse de sédiments issus de l’altération et de l’érosion des reliefs. On observe une augmentation de celle-ci depuis 30 Ma.
Les cartes paléogéographiques du document 4 apportent des informations sur les relations entre la disposition des masses continentales, la circulation océanique et ses impacts climatiques.
1. On observe depuis le début de l’Éocène un refroidissement progressif du climat d’environ 16 °C avec formation des calottes polaires dès la fin de l’Éocène pour l’hémisphère sud et au Pliocène pour l’hémisphère nord. Ce refroidissement est corrélé à une diminution importante de la teneur en CO2 dans l’atmosphère.
2. D’après le document 3, la dynamique des masses continentales a entraîné au Cénozoïque la formation de la ceinture orogénique alpine, dont l’altération a été importante. L’altération des roches constituant ces reliefs, couplée à la précipitation des carbonates a provoqué une diminution de la teneur atmosphérique en CO2 suivant le bilan : 2 CaSi2Al2O8 + 2 CO2 + 4 H2O → Si4O10Al4(OH)8 + 2 CaCO3
3. La diminution de la teneur atmosphérique en CO2 a entrainé, par diminution de l’effet de serre, un refroidissement climatique global.
Globalement, à l’échelle du Cénozoïque, et depuis 30 millions d’années, les indices géochimiques des sédiments marins montrent une tendance générale à la baisse de température moyenne du globe. Celle-ci apparaît associée à une baisse de la concentration atmosphérique de CO2 en relation avec l’altération des matériaux continentaux, notamment à la suite des orogénèses du Tertiaire.
4/ climat quaternaire
Manuel p.300
dossier Google earth d'origine : https://svt.ac-versailles.fr/spip.php?article286
Mettre en évidence l’amplitude et la période des variations climatiques étudiées à partir d’une convergence d’indices.
Rassembler et confronter une diversité d’indices sur le dernier maximum glaciaire et sur le réchauffement de l’Holocène (changement de la mégafaune dans les peintures rupestres, cartographie des fronts morainiques, construction et utilisation de diagrammes polliniques, terrasses, paléoniveaux marins…).
Discuter de l’existence d’indices pas toujours cohérents avec l’amplitude, la période et la temporalité des variations climatiques pour des raisons résolues (exemples des terrasses fluviatiles) ou encore à résoudre (petit âge glaciaire).
Aucun commentaire:
Enregistrer un commentaire